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ABSTRACT
Although the advent of “Omics” technologies (genomics, transcriptome, proteome and metabolome) has
allowed overcoming the challenges imposed by the traditional empirical drug development models,
facilitating drug discovery and development, these technologies have contributed to the generation of
a large volume of data (pharma big data). Due to the complex nature of the (bio) pharmaceutical data,
which count on structured and non-structured data, conventional statistic techniques are not sufficient
to efficiently explore these datasets, which could lead to noise accumulation or spurious correlation. In
this context, data analytics offers a set of appropriate statistical techniques that, combined with Artificial
Intelligence (AI) have allowed overcoming the challenges imposed by the Pharmaceutical Big Data Era.
The applications of these techniques in the (bio) pharmaceutical sector have allowed for a selection of
features of interest, revealing unexpected correlations among multi-Omics, preclinical and clinical data,
reducing the time and cost for drug discovery. Based on this, this review aims to summarize the most
useful applications of pharma data analytics (pharma intelligence), discussing the opportunities and
challenges offered by this new field of investigation.
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INTRODUCTION
According to the Global Burden of Disease (GBD) Study, the global impact of non-communicable diseases
(NCDs) has grown over the last three decades1-4. During this time, the notorious advances in medicine and
sanitary conditions improvements significantly reduced the incidence and mortality of infectious diseases,
creating an epidemiological transition scene. This scene is characterized by an increasing incidence of
cardiovascular, chronic respiratory diseases, mental health and neurological  disorders  and  diabetes  as
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a consequence of the aging of the human population5-9. Data from a study commissioned by Roche
showed that NCDs kill approximately 41 million people each year, being responsible for 71% of all deaths
globally reported10.

The  macroeconomic  burden  of  NCDs  over  the  period,  2011-2030  will  cost  the  global  economy
US$ 30 trillion, representing 48% of the global gross domestic product (GDP) in 201010. Based on this,
several initiatives have inspired countries to launch policies, good practices and investments in Research,
Development and Innovation (RD&I) of novel drugs able  to  reduce  the  economic  impacts  of  NCDs.
This is because, for each $1 invested in cost-effective solutions for the prevention and control of NCDs,
it is expected a return of at least $7 by 203011. Moreover, a recent estimation for drug and diagnostic for
NCDs estimates that the current market size is US$ 346 billion growing at a compound annual growth rate
of approximately 7.2% from 2021 to 202611. This epidemiological transition scene has driven the (bio)
pharmaceutical industry to invest in RD&I of novel products able to prevent or treat these NCDs.

Over the last two decades, the changing landscape of drug RD&I evidenced significant disadvantages of
the traditional empirical drug development models11. The empirical drug development model is centric
to meet predefined regulatory requirements and get market access instead of addressing the current
complex challenges of RD&I productivity. In addition, historical evidence indicates that the traditional
empirical drug development model not only increases the time to obtain the registry of new (bio)
pharmaceutical products for the treatment of NCDs but also cause economic losses to all pharmaceutical
supply chain. The primary failure rates are attributed to efficacy failure in late-stage clinical phases of drug
development followed by patient safety concerns. Moreover, the lack of superior outcomes to established
therapies, a demonstration of commercial potential, insufficient financial budget and regulatory
submission challenges are other emphasized attributes of late-stage attrition of new molecular entities.

However, the advent of “Omics” technologies has mitigated the challenges from the empirical drug
development model, revolutionizing the RD&I in the (bio) pharmaceutical sector.

Omics technologies are high-throughput biomolecular analytical techniques that include genomics,
transcriptome, proteome and metabolome to quantitatively access the levels of all genes, transcripts,
proteins and metabolites produced by target cells or tissues. On the one hand, the combined use of these
techniques (multi-Omics) has accelerated the drug RD&I, on the other hand, these multi-Omics tools have
contributed to the generation of high amount of data (Big data) which are not efficiently used by
(bio)pharmaceutical industry to generate valuable insights12-14. In addition, despite the technical
recommendation to guarantee the best practices for RNA-Seq data analysis and the multitude of
bioinformatic and statistical tools available, RNA-Seq results are still limited to providing molecular
information12-14. For this reason, even in this Omics Era, the (bio) pharmaceutical industry remains using
traditional empirical drug development models, especially to provide proof of concepts for regulatory
purposes. This is because, data from Omics technologies are not properly and adequately correlated to
preclinical and clinical results, requiring novel experiments as proof of concept for Omics data.

Thus, (bio) pharmaceutical industries have accumulated an enormous number of multi-Omics, in vitro,
preclinical and clinical data, resulting in a novel and complex problem for Pharmaceutical Big Data Era:
How to analyze these datasets with efficiency to provide valuable information to support the drug RD&I?

The problem occurs due to the complex nature of these pharmaceutical data, which combine structured
(tabular data) and non-structured data (image bank, sound and video recording) which difficult the
extraction of valuable information15. This is because the conventional statistical techniques are not
sufficient to efficiently explore these datasets. Besides this, these techniques can generate noise
accumulation or spurious correlation negatively impacting the decision-make process associated with the
drug RD&I15,16.
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Noise accumulation occurs due to the accumulation of estimation errors when the prediction is based on
many parameters, reducing the predictive power of the model. Spurious correlation occurs when a large
number of variables are evaluated and, a target variable is highly correlated with other variables with
which they do not correlate15.

Both noise accumulation and spurious correlation occurs because standard statistical tests assume that
a single hypothesis is tested. However, when multiple hypotheses are tested simultaneously, there is a
higher probability of a Type  I  error  (false-positive)-an  incorrect  rejection  of  a  true  null  hypothesis15.
Thus, the advances in Omics Era mandatorily require integrative and multidisciplinary knowledge.

In this context, the use of different statistical techniques set from data analytics, along with predictive
modeling and machine learning has allowed us to overcome the challenges imposed by the
Pharmaceutical Big Data Era15,16. This is because, the combined use of these tools has allowed to a
selection of variables of interest, revealing unexpected correlations among these variables and significantly
reducing the time and cost of drug discovery16.

Considering the current importance of transcriptome in the Omics Era of the pharmaceutical industry, this
review aims to discuss the challenges to efficiently explore the high amount of data (Big data) generated
using this technology under a Data Analytics and Artificial Intelligence (AI) perspective.

RNA-Seq data analysis: From basic recommendations to Artificial Intelligence (AI)-based analysis:
The advent of high-throughput techniques presents both challenges and opportunities to the (bio)
pharmaceutical industry17. Among these techniques, transcriptome,  which  includes  RNA  sequencing
(RNA-Seq), single-cell RNA sequencing (scRNA-Seq) and most recently the third-generation sequencing
approaches such as DropSeq and in drop in stands out due to their capability to assess qualitative and
quantitatively the gene expression levels, reveling regulation characteristics and the molecular
mechanisms in the process of diseases and regulated pathway affected by drug intervention18. For these
reasons,  it  is  not  surprising  that  data  from  tratranscriptomve  have  been  used  to  predict  the
mechanism of action (MOA) of investigational products (IP) and identify possible toxic effects related to
the use of the IP19,20.

Due to the analytical complexity of the RNA-Seq data, several recommendations have been proposed by
the literature to guarantee the quality of the results obtained with this technique12,21,22. In general, these
recommendations are focused on experimental questions, such as the number of samples, sequencing
depth, quality control, read alignment and quantification of gene levels12,21,22. Despite these
recommendations, there is no single analysis pipeline to be used in all cases. In this sense, the multiple
bioinformatic tools, especially those applied to assess the differential expression, make the RNA-Seq data
analysis a laborious task, requiring basic knowledge of genetics, bioinformatics and statistics. Moreover,
functional enrichment analysis of genes differently expressed (identified in RNA-Seq) can lead to different
predictions according to the database used to perform these analyses, contributing to the generation of
spurious results.

In this sense, some basic aspects may be attempted to guarantee the applicability of RNA-Seq for
pharmaceutical purposes. Although this review does not aim to propose the rules for the best practice of
RNA-Seq analysis, herein we summarize some useful recommendations that can be generically applied
for all studies that use RNA-Seq to assess the differential gene expression:

C RNA isolation/extraction: The use appropriate commercial or in-house protocols to remove the
highly abundant ribosomal RNA (rRNA), which typically constitutes over 90% of the total RNA in the
cells
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C RNA concentration and integrity: Quantify and check the RNA integrity with the appropriate
method (preferentially using the BioAnalyzer). To guarantee the sequencing quality, use samples with
RNA integrity number (RIN) greater than sex (RIN>6)

C Selection of Poly(A) transcripts: Considering that in eukaryotic most protein-coding RNAs (mRNAs)
and many long noncoding RNAs (lncRNAs>200 nt) contain a polyadenylated tail-poly(A), which
provides a technical opportunity for enrichment of both mRNAs and lncRNAs23. As a useful alternative,
poly(A) tail can be selected using oligo-dT priming for reverse transcriptase (RT). However, considering
that the polyadenylation exclusively occurs at the 3' end, this method can result in sequencing reads
enriched for the 3' portion of the transcript. In addition, Oligo-dT can also prime at internal A-rich
sequences (phenomenon called internal poly(A) priming), leading to biased RT. For these reasons,
poly(A) purification-based techniques remain to be a preferred method to select mRNAs and
lncRNAs23

C Ribosomal RNA (rRNA) depletion: For instance, non-poly(A) RNAs, such as prokaryotic mRNA,
fragmented mRNAs from formalin-fixed, paraffin-embedded (FFPE) samples are often the subject of
investigation. In these cases, poly(A)-based methods for purifying these RNAs are not adequate,
requiring rRNA depletion. Several techniques are available for this purpose. These techniques include
(i) Hybridization with biotinylated DNA or locked nucleic acid (LNA) probes, followed by depletion with
streptavidin beads, (ii) Antisense DNA oligos target to rRNA, followed by digestion with RNase H
(probe-directed degradation PDD) and (iii) Circularization of all cDNA (including those of rRNAs),
followed  by  hybridization  with  rRNA  probes  and  digestion  with  duplex-specific  nuclease  (DNS) 
etc.23

C Fragmentation: Both poly(A) enriched or rRNA depleted RNA samples may be fragmented to a
certain size range due to the limitation of sequencing platforms (<600 bp). RNA fragmentation can
be performed using alkaline solutions, solutions with divalent cations, such as Mg2+ or Zn2+ or
enzymes such as RNase III23

C Single-(SE) or paired-end (PE) reads: Define in the experimental design whether only one cDNA
strand (3' or 5', SE) or both cDNA strands (3' and 5', PE) will be sequenced. In general, SE reads are
sufficient for studies of gene expression levels in well-annotated organisms, whereas PE reads are
preferable to characterize poorly annotated transcriptomes. For de novo transcript discovery or
isoform analysis, preferably use PE sequencing12

C Sequencing depth or library size: Considering that more transcripts will be detected and their
quantification will be more precise as the samples are sequences to a deeper level, work with a
sequencing depth between 25-100 million reads, preferably 50 million reads12

C Number of replicates: Although the number of replicates depends on both the amount of technical
variability in the RNA-Seq procedures and the biological variability of the system under study,
currently recommendations have proposed at least four replicates to guarantee the desired statistical
power12

C Quality control checkpoints: Check the quality of the sequenced reads using appropriate
bioinformatics tools such as FastQC or MultiQC24,25. Verify the quality control after each step of
downstream analyses

C Read alignment: Use an appropriate aligner to map the about the genome control. Different aligners
are available for this purpose, such as BWA26, RUM27, Bowtie 228, Tophat 229 and HISAT230. However,
the Spliced Transcripts Alignment to a Reference (STAR) became one of  the  mst  used  aligner  for
RNA-Seq31,32. This is because, this aligner can detect canonical junctions and discover non-canonical
splices and fusion transcripts33,34

C Transcripts quantification: Aggregate the raw counts of mapped reads using programs such as
HTSeq-count34 or featureCounts34
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C Normalization: Raw read counts alone are not sufficient to compare expression levels among
samples, as these values are affected by factors such as transcript length, the total number of reads
and sequencing bias12. For this reason, use appropriate techniques to normalize the row read counts.
Different methods are used for this purpose, however, the transcripts per million (TPM)12 and most
recently, DESeq235,36 or edgeR37 are the most commonly and appropriated normalization techniques
to compare the genes differentially expressed among samples

Despite  these  recommendations,  the  RNA-Seq  dataset   analysis   is  still  a  complex  and  laborious
task.   This   is  because,   there   are   various  statistical  methods  and,  most  recently,  Artificial
Intelligence (AI)-based technologies available to help the RNA-Seq analysis process. A summary of the
steps comprised in a basic RNA-Seq data analysis pipeline was shown in Fig. 1.

Statistical analyses: Comprise a mandatory set of techniques that are required to analyze and visualize
results from in vitro, preclinical and clinical studies, allowing to identification of main patterns. In terms
of transcriptome analysis, statistical-based techniques are effective in finding gene groups of interest38.
Although crucial, statistical methods are not sufficient to analyze the high amount of data generated by
the  (bio)  pharmaceutical  industries.  In  this  sense,  AI  technologies  have  allowed  us   to   analyze
these data, identifying features of interest (feature selection) from Omics, preclinical and clinical data.
Combing appropriated statistical methods and AI as Data Analytics tools, it is possible to identify
correlations between these data, providing valuable information that could accelerate the RD&I for the
(bio) pharmaceutical sector.

Pharma data analytics (pharma intelligence): Data analytics (or analytics) represents an extensive field
of investigation of raw data, which has been used for more than two decades in the financial sector and

Fig. 1: Schematic model showing a basic pipeline to analyze the RNA-Seq. Raw data are processed and
the sequences are aligned using appropriate tools (such as STAR). Next, the genes are counted and
the list of the counted gene is subjected to gene expression analysis. This step consists of a pre-
procesisng to perform the differential gene analysis. Genes identified as differentially expressed are
subject to different downstream analyses, which are necessary to provide information about the
biological role of these genes
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Fig. 2: Schematic models showing the data analytics steps. The data are collected and stored to obtain
the database, which is comprised of multiple variables. These data are processed to clean the data.
The variables are organized and combined to facilitate the downstream analyses. In the data
analysis and modeling steps, the data are summarized. Next, the data are modeling and subjected
to inference analyses to obtain patterns, trends or behaviors. The information obtained through
the data analysis and modeling is reported using strategies of storytelling, providing insight from
the database

most recently, applied to the (bio) pharmaceutical sector (Pharma Data Analytics). Data analytics combines
statistical and AI techniques to process and evaluate data, identifying patterns and behaviors that can
support decision making processes. This process is divided into sequential steps that involve: (i) Data
collection, (ii) Processing, (iii) Analysis and modeling and (iv) Data reporting, as shown in Fig. 2.

However, the high amount of data accumulated from multi-Omics, in vitro, preclinical and clinical studies
generated along the drug discovery and development required the implementation of computational
tools to facilitate these steps. In this sense, the advent of Artificial Intelligence (AI), a core branch of
Computer Science, allowed us to concatenate these steps, generating valuable information that reduces
both time and costs of RD&I of (bio) pharmaceutical industries17,39. Thus, the applications of these tools
in the pharmaceutical sector have revolutionized drug discovery and development, resulting in the Pharma
Intelligence Era.

Although there are many definitions and subclassifications of AI available in the literature, AI technologies
can be divided into two categories: (i) Machine learning (ML) and (ii) Deep learning38.

Machine learning uses algorithms that progressively learn from data, identifying relationships and making
predictions of a phenomenon of interest. The techniques can be subdivided into (i) Supervised and (ii)
Unsupervised approaches according to the type of data available and the objectives of the analysis. In the
supervised approach, the data have a target variable that is intended to predict and analyze. The
unsupervised approach, by contrast, does not involve a target of interest and the algorithm looks for
patterns within the data set.

Supervised learning is used to predict categorical (classification) or numeric outcomes (regression).
Unsupervised is used to reduce the dimensionality of Big Data (dimensionality reduction) or to group data
by similarity (clustering), as described in Fig. 3.
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Fig. 3: Schematic model of machine learning (ML) applications. ML is divided into supervision and
unsupervised learning. Supervised learning is used to predict categorical (classification) or numeric
outcomes (regression). Unsupervised learning is used to reduce the dimensionality of the data
(dimensionality reduction) or to group data/variables by similarity (clustering). Thus, supervisioned
learning is applied to modeling, whereas unsuperviosed learning, is to descriptive analysis

Deep learning is a very active area of research in AI communities38,40. Deep learning is based on the neural
network. For this reason, it is also known as deep neural networks (DNNs)39,41. Neuronal networks were
first thought in the late 1980s. However, the neuronal networks resurfaced after 2010, after many
problems had been resolved with a new architecture41. Since then, deep learning has been effectively
applied in many fields, including pharmacy38,40.

Using neural networks, deep learning can model biological complexity, serving as a useful and powerful
tool applied to image analysis of research subjects of clinical trials, including images from computerized
tomography42,43 and/or magnetic resonance44-46 or even histopathological images47.

Feature engineering and selection: On the one hand, the multi-Omics Era has provided multiple data
to support drug discovery and development, on the other hand, the amount of data produced by these
techniques requires techniques to reduce the multidimensionality of these data and tools able to correctly
identify the most important features (attributes/variables) to provide information. However, this problem
is not restricted to the Omics data. This is because, to obtain the registry of a novel drug, (bio)
pharmaceutical companies generate many data from in vitro, preclinical and clinical studies to provide
evidence of the safety and benefits of the investigational product. Thus, even the empirical drug
development model can be considered a source of Big Data.

In this scene, one of the biggest challenges to accelerate the RD&I in the (bio) pharmaceutical sector is
to identify among the numerous analyzed features, those that are relevant. In this context, data analytics
has contributed to the identification of valuable features through two techniques: (i) Feature engineering
(FE) and (ii) Selection (FS).
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Features capture salient aspects of the phenomenon or process of interest. However, the unappropriated
use of these features can deviate From the results, leading to noise accumulation that contributes to
spurious correlation48. For this reason, the selection of aappropriate features is a crucial step to improve
the performance of ML algorithms.

Although there are many pre-processing steps for the inputs to be fed into an algorithm for the learning
process, feature engineering and selection remain challenging for both data scientists and analytics48,49.
This is because, a good feature should be (i) Informative, (ii) Never change for the set of transformations
and (iii) Fast computing48,49.

To facilitate the selection of a good feature, variables are commonly classified as: (i) Strongly relevant
(always preferred), (ii) Weakly relevant (that, when adequately combined with strongly relevant features,
can improve relevance to the problem), (iii) Irrelevant (may be discarded) and (iv) Redundant (which may
be ignored or removed48,49).

Based on this, computational methods of FE e FS have been applied to identify good features. The FE is
divided into (i) Feature transformation and (ii) Feature creation. Feature transformation involves the
cleaning/pre-processing techniques (missing data and outlier treatment, categorical encoding, variable
transformation, discretization, data and time engineering), followed by the transformation of variables into
formatted features48,49. Next, it is generated new features based on existing attributes (feature creation48).
The better features generated in FE step may be selected using  algorithms  to  discover  good  features
(FS step)50. Combined, the FE and FS techniques avoid overfitting and improve model performance,
providing the most and more cost-effective model and offering insight into the underlying processes that
generated the data51.

In terms of FS, it is important to guarantee the stability of the feature selection algorithm51. Stability
provides the best objective criteria to choose the feature selection algorithm, providing a high-quality
feature subset and higher confidence in better classification performance51.

CONCLUSION
Working with multi-disciplinary teams and using Data Analytics, pharmaceutical industries have been
transformed into multiple large multidimensional datasets to identify phenotypes and early predictors of
patient disease activity and progression. The information provided by these technologies have been
revolutionized the (bio) pharmaceutical sector, allowing to identify new targets and compounds that can
be developed into new drugs, facilitating drug discovery and development. The applications of Data
Analytics have also contributed to the development of personalized medicine. This is because, the (re)
analysis of the large volume of clinical data, such as medical histories allows us to identify subgroups of
patients for whom investigational products or already licensed drugs are most effective. In addition, the
combined use of statistical techniques and AI have allowed identify and select relevant features,
accelerating the registry process. However, the applications of Pharma Data Analytics are not limited to
the research and development of drugs. These tools are also useful to monitor the safety of drugs
(pharmacovigilance) and quickly identify potential risks related to the use of a specific drug. Due to the
multiple techniques available, as well as the complexity of these tools, that require knowledge in data
science, statistics and analytics, Data Analytics, even in Pharma, remains disconnected from the life science.
Thus, undoubtedly, the main challenge to overcome in the next years is to extract the predictive power
of Pharma Data Analytics by increasing the participation of professionals from most different areas,
creating multidisciplinary teams of Data Analytics to provide valuable insight for the RD&I in (bio)
pharmaceutical sector.
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SIGNIFICANCE STATEMENT
The advents of novel technologies able to assess all genes, transcripts, proteins and metabolites produced
by the cells (known as Omics technologies) have generated a high volume of data for (bio) pharmaceutical
companies (Pharma Big Data). Although necessary (especially for the regulatory process), the statistical
methods are not sufficient to extract valuable information from this dataset. In this sense, the application
of Artificial Intelligence (AI)-based technologies with appropriate statistical techniques (Pharma Data
Analytics) has enabled the analysis of these Pharma Big Data, revolutionizing pharmaceutical research,
development and innovation. For this reason, this review discusses the opportunities and challenges of
the application of these analytical technics in the pharmaceutical sector.
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